On a System of Functional Equations
A continuous multifunction F:[a,b] → clb(Y) is *-concave if and only if the inclusion holds for every s,t ∈ [a,b], s < t.
K. Baron and Z. Kominek [2] have studied the functional inequality f(x+y) - f(x) - f(y) ≥ ϕ (x,y), x, y ∈ X, under the assumptions that X is a real linear space, ϕ is homogeneous with respect to the second variable and f satisfies certain regularity conditions. In particular, they have shown that ϕ is bilinear and symmetric and f has a representation of the form f(x) = ½ ϕ(x,x) + L(x) for x ∈ X, where L is a linear function. The purpose of the present...
In [4], assuming among others subadditivity and submultiplicavity of a function ψ: [0, ∞)→[0, ∞), the authors proved a Hyers-Ulam type stability theorem for “ψ-additive” mappings of a normed space into a normed space. In this note we show that the assumed conditions of the function ψ imply that ψ=0 and, consequently, every “ψ-additive” mapping must be additive