On the continuity of Q-convex functions and additive functions. (Short Communication).
This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.
The inverse stability of functional equations is considered, i.e. when the function, approximating a solution of the equation, is an approximate solution of this equation.
In the paper two types of stability and of b-stability of functional equations are distinguished.
We deal with the stability of the orthogonal additivity equation, presenting a new approach to the proof of a 1995 result of R, Ger and the second author. We sharpen the estimate obtained there. Moreover, we work in more general settings, providing an axiomatic framework which covers much more cases than considered before by other authors.
We consider the stability, the superstability and the inverse stability of the functional equations with squares of Cauchy’s, of Jensen’s and of isometry equations and the stability in Ulam-Hyers sense of the alternation of functional equations and of the equation of isometry.
In Orlicz spaces theory some strengthened version of the Jensen inequality is often used to obtain nice geometrical properties of the Orlicz space generated by the Orlicz function satisfying this inequality. Continuous functions satisfying the classical Jensen inequality are just convex which means that such functions may be described geometrically in the following way: a segment joining every pair of points of the graph lies above the graph of such a function. In the current paper we try to obtain...