Stability of the Cauchy equation in ordered fields.
Let X be a quasi-Banach space. We prove that there exists K > 0 such that for every function w:ℝ → X satisfying ||w(s+t)-w(s)-w(t)|| ≤ ε(|s|+|t|) for s,t ∈ ℝ, there exists a unique additive function a:ℝ → X such that a(1)=0 and ||w(s)-a(s)-sθ(log₂|s|)|| ≤ Kε|s| for s ∈ ℝ, where θ: ℝ → X is defined by for k ∈ ℤ and extended in a piecewise linear way over the rest of ℝ.
The paper deals with the stability of the fundamental equation of information of multiplicative type. It is proved that the equation in question is stable in the sense of Hyers and Ulam under some assumptions. This result is applied to prove the stability of a system of functional equations that characterizes the recursive measures of information of multiplicative type.
In this paper we prove stability-type theorems for functional equations related to spherical functions. Our proofs are based on superstability-type methods and on the method of invariant means.