Displaying 321 – 340 of 574

Showing per page

On the ideal convergence of sequences of quasi-continuous functions

Tomasz Natkaniec, Piotr Szuca (2016)

Fundamenta Mathematicae

For any Borel ideal ℐ we describe the ℐ-Baire system generated by the family of quasi-continuous real-valued functions. We characterize the Borel ideals ℐ for which the ideal and ordinary Baire systems coincide.

On the metric dimension of converging sequences

Ladislav, Jr. Mišík, Tibor Žáčik (1993)

Commentationes Mathematicae Universitatis Carolinae

In the paper, some kind of independence between upper metric dimension and natural order of converging sequences is shown — for any sequence converging to zero there is a greater sequence with an arbitrary ( 1 ) upper dimension. On the other hand there is a relationship to summability of series — the set of elements of any positive summable series must have metric dimension less than or equal to 1 / 2 .

On the sequence of integer parts of a good sequence for the ergodic theorem

Emmanuel Lesigne (1995)

Commentationes Mathematicae Universitatis Carolinae

If ( u n ) is a sequence of real numbers which is good for the ergodic theorem, is the sequence of the integer parts ( [ u n ] ) good for the ergodic theorem ? The answer is negative for the mean ergodic theorem and affirmative for the pointwise ergodic theorem.

On the uniform convergence of weighted trigonometric series

Bogdan Szal (2011)

Banach Center Publications

In the present paper we consider a new class of sequences called GM(β,r), which is the generalization of a class defined by Tikhonov in [15]. We obtain sufficient and necessary conditions for uniform convergence of weighted trigonometric series with (β,r)-general monotone coefficients.

On two-scale convergence and related sequential compactness topics

Anders Holmbom, Jeanette Silfver, Nils Svanstedt, Niklas Wellander (2006)

Applications of Mathematics

A general concept of two-scale convergence is introduced and two-scale compactness theorems are stated and proved for some classes of sequences of bounded functions in L 2 ( Ω ) involving no periodicity assumptions. Further, the relation to the classical notion of compensated compactness and the recent concepts of two-scale compensated compactness and unfolding is discussed and a defect measure for two-scale convergence is introduced.

Currently displaying 321 – 340 of 574