The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1581 –
1600 of
2610
Capital and lower-case approximations of the expected value of a class of smooth functions of the normalized random partial sums of dependent random variables by the expectation of the corresponding functions of Gaussian random variables are established. The same types of approximation are also obtained for dependent random vectors. This generalizes and improves previous results of the author (1980) and Rychlik and Szynal (1979).
We will generalize and improve the results of T. Singh [Publ. Math. Debrecen 40 (1992), 261-271] obtaining the L. Leindler type estimates from [Acta Math. Hungar. 104 (2004), 105-113].
Let X be a normed space. A set A ⊆ X is approximately convexif d(ta+(1-t)b,A)≤1 for all a,b ∈ A and t ∈ [0,1]. We prove that every n-dimensional normed space contains approximately convex sets A with and , where ℋ denotes the Hausdorff distance. These estimates are reasonably sharp. For every D>0, we construct worst possible approximately convex sets in C[0,1] such that ℋ(A,Co(A))=(A)=D. Several results pertaining to the Hyers-Ulam stability theorem are also proved.
This survey is a tribute to Géza Grünwald and Józef Marcinkiewicz dealing with the so called Grünwald-Marcinkiewicz Theorem.
Currently displaying 1581 –
1600 of
2610