Page 1 Next

Displaying 1 – 20 of 35

Showing per page

Familles fuchsiennes d’équations aux ( q -)différences et confluence

Anne Duval, Julien Roques (2008)

Bulletin de la Société Mathématique de France

On commence par présenter une méthode de résolution d’une famille de systèmes fuchsiens d’opérateurs de pseudo-dérivations associées à une famille à deux paramètres d’homographies, qui unifie et généralise les cas connus des systèmes différentiels, aux différences ou aux q -différences. Nous traitons ensuite dans cette famille des problèmes de confluence que l’on peut voir comme des problèmes de continuité en ces deux paramètres.

Fast evaluation of thin-plate splines on fine square grids

Petr Luner, Jan Flusser (2005)

Kybernetika

The paper deals with effective calculation of Thin-Plate Splines (TPS). We present a new modification of hierarchical approximation scheme. Unlike 2-D schemes published earlier, we propose an 1-D approximation. The new method yields lower computing complexity while it preserves the approximation accuracy.

Finite-difference preconditioners for superconsistent pseudospectral approximations

Lorella Fatone, Daniele Funaro, Valentina Scannavini (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The superconsistent collocation method, which is based on a collocation grid different from the one used to represent the solution, has proven to be very accurate in the resolution of various functional equations. Excellent results can be also obtained for what concerns preconditioning. Some analysis and numerous experiments, regarding the use of finite-differences preconditioners, for matrices arising from pseudospectral approximations of advection-diffusion boundary value problems, are presented...

For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center

Libor Veselý (2001)

Commentationes Mathematicae Universitatis Carolinae

Let X be a non-reflexive real Banach space. Then for each norm | · | from a dense set of equivalent norms on X (in the metric of uniform convergence on the unit ball of X ), there exists a three-point set that has no Chebyshev center in ( X , | · | ) . This result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin.

Currently displaying 1 – 20 of 35

Page 1 Next