spaces fail a certain approximative property.
We study a Kantorovich-type modification of the operators introduced in [1] and we characterize their convergence in the -norm. We also furnish a quantitative estimate of the convergence.
Let be a polynomial of degree at most which does not vanish in the disk , then for and , Boas and Rahman proved In this paper, we improve the above inequality for by involving some of the coefficients of the polynomial . Analogous result for the class of polynomials having no zero in is also given.
In this paper, the concept of lacunary equi-statistical convergence is introduced and it is shown that lacunary equi-statistical convergence lies between lacunary statistical pointwise and lacunary statistical uniform convergence. Inclusion relations between equi-statistical and lacunary equi-statistical convergence are investigated and it is proved that, under some conditions, lacunary equi-statistical convergence and equi-statistical convergence are equivalent to each other. A Korovkin type approximation...
In this paper, the Babuška’s theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions.
In this paper, the Babuška's theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions.