Basic sets of polynomials in Clifford analysis
For certain generalized Bernstein operators {L n} we show that there exist no i, j ∈ {1, 2, 3,…}, i < j, such that the functions e i(x) = x i and e j (x) = x j are preserved by L n for each n = 1, 2,… But there exist infinitely many e i such that e 0(x) = 1 and e j (x) = x j are its fixed points.
We define Bernstein-type operators on the half line by means of two sequences of strictly positive real numbers. After studying their approximation properties, we also establish a Voronovskaja-type result with respect to a suitable weighted norm.