Page 1 Next

Displaying 1 – 20 of 21

Showing per page

Caristi's fixed point theorem and its equivalences in fuzzy metric spaces

Naser Abbasi, Hamid Mottaghi Golshan (2016)

Kybernetika

In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.

Chebyshev coficients for L1-preduals and for spaces with the extension property.

José Manuel Bayod Bayod, María Concepción Masa Noceda (1990)

Publicacions Matemàtiques

We apply the Chebyshev coefficients λf and λb, recently introduced by the authors, to obtain some results related to certain geometric properties of Banach spaces. We prove that a real normed space E is an L1-predual if and only if λf(E) = 1/2, and that if a (real or complex) normed space E is a P1 space, then λb(E) equals λb(K), where K is the ground field of E.

Containing l1 or c0 and best approximation.

Juan Carlos Cabello Piñar (1990)

Collectanea Mathematica

The purpose of this paper is to obtain sufficient conditions, for a Banach space X to contain or exclude c0 or l1, in terms of the sets of best approximants in X for the elements in the bidual space.

Currently displaying 1 – 20 of 21

Page 1 Next