Shape-preserving multivariate polynomial approximation in .
We consider the problem of calculating a closed form expression for the integral of a real-valued function f:ℝⁿ → ℝ on a set S. We specialize to the particular cases when S is a convex polyhedron or an ellipsoid, and the function f is either a generalized polynomial, an exponential of a linear form (including trigonometric polynomials) or an exponential of a quadratic form. Laplace transform techniques allow us to obtain either a closed form expression, or a series representation that can be handled...
An explicit description of the basic Lagrange polynomials in two variables related to a six-tuple of nodes is presented. Stability of the related Lagrange interpolation is proved under the following assumption: are the vertices of triangles without obtuse inner angles such that has one side common with for .