Best approximation and fixed points in strong -starshaped metric spaces.
Let be a nonempty compact subset of a Banach space and denote by the family of all nonempty bounded closed convex subsets of . We endow with the Hausdorff metric and show that there exists a set such that its complement is -porous and such that for each and each , the set of solutions of the best approximation problem , , is nonempty and compact, and each minimizing sequence has a convergent subsequence.
If f is a continuous seminorm, we prove two f-best approximation theorems for functions Φ not necessarily continuous as a consequence of our version of Glebov's fixed point theorem. Moreover, we obtain another fixed point theorem that improves a recent result of [4]. In the last section, we study continuity-type properties of set valued parametric projections and our results improve recent theorems due to Mabizela [11].
In this paper we study simultaneous approximation of real-valued functions in and give a generalization of some related results.
A typical wavelet system constitutes an unconditional basis for various function spaces -Lebesgue, Besov, Triebel-Lizorkin, Hardy, BMO. One of the main reasons is the frequency localization of an element from such a basis. In this paper we study a wavelet-type system, called a brushlet system. In [3] it was noticed that brushlets constitute unconditional bases for classical function spaces such as the Triebel-Lizorkin and Besov spaces. In this paper we study brushlet expansions of functions in the...