S. N. Bernstein type estimations in the mean on the curves in a complex plane.
Following Beurling's ideas concerning sampling and interpolation in the Paley-Wiener space Lτ∞, we find necessary and sufficient density conditions for sets of sampling and interpolation in the Paley-Wiener spaces Lτp for 0 < p ≤ 1.
Three problems arising in approximation theory are studied. These problems have already been studied by Arthur Sard. The main goal of this paper is to use geometrical compatibility theory to extend Sard's results and get characterizations of the sets of solutions.
In the context of self-stabilizing processes, that is processes attracted by their own law, living in a potential landscape, we investigate different properties of the invariant measures. The interaction between the process and its law leads to nonlinear stochastic differential equations. In [S. Herrmann and J. Tugaut. Electron. J. Probab. 15 (2010) 2087–2116], the authors proved that, for linear interaction and under suitable conditions, there exists a unique symmetric limit measure associated...
In the context of self-stabilizing processes, that is processes attracted by their own law, living in a potential landscape, we investigate different properties of the invariant measures. The interaction between the process and its law leads to nonlinear stochastic differential equations. In [S. Herrmann and J. Tugaut. Electron. J. Probab. 15 (2010) 2087–2116], the authors proved that, for linear interaction and under suitable conditions, there...