O aproximací obrazu v Hilbertově transformací ortogonálními řadami racionálních lomených funkcí
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Page 1 Next
Jiří Gregor (1961)
Aplikace matematiky
František Josef Studnička (1890)
Časopis pro pěstování mathematiky a fysiky
František Josef Studnička (1891)
Časopis pro pěstování mathematiky a fysiky
S.N. Lal (1976)
Publications de l'Institut Mathématique [Elektronische Ressource]
Alexandr Fischer (2000)
Pokroky matematiky, fyziky a astronomie
Stéphane Jaffard (1997)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Douak, Khalfa (1999)
International Journal of Mathematics and Mathematical Sciences
Tomovski, Živorad (2000)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
František Púchovský (1988)
Časopis pro pěstování matematiky
A. Jalali-Naini, A.J. Watkins (1989)
Metrika
J. Chidambaraswamy (1975)
Journal für die reine und angewandte Mathematik
S. K. Pichorides (1978)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
H. Kita (1996)
Studia Mathematica
Let and , where a(s) is a positive continuous function such that and b(s) is quasi-increasing and . Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants and such that for all ; (jj) there exist positive constants and such that for all .
Bérenger Akon Kpata (2019)
Archivum Mathematicum
We establish a decomposition of non-negative Radon measures on which extends that obtained by Strichartz [6] in the setting of -dimensional measures. As consequences, we deduce some well-known properties concerning the density of non-negative Radon measures. Furthermore, some properties of non-negative Radon measures having their Riesz potential in a Lebesgue space are obtained.
Henry W. Davis (1972)
Mathematica Scandinavica
S. R. Agrawal, C. M. Patel (1976)
Matematički Vesnik
Mrinal Kanti Das (1975)
Publications de l'Institut Mathématique
M.K. Das (1974)
Publications de l'Institut Mathématique [Elektronische Ressource]
Katusi Fukuyama (1999)
Colloquium Mathematicae
Mark Kac gave an example of a function f on the unit interval such that f cannot be written as f(t)=g(2t)-g(t) with an integrable function g, but the limiting variance of vanishes. It is proved that there is no measurable g such that f(t)=g(2t)-g(t). It is also proved that there is a non-measurable g which satisfies this equality.
Josef Korous (1946)
Časopis pro pěstování matematiky a fysiky
Page 1 Next