O aproximací obrazu v Hilbertově transformací ortogonálními řadami racionálních lomených funkcí
Let and , where a(s) is a positive continuous function such that and b(s) is quasi-increasing and . Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants and such that for all ; (jj) there exist positive constants and such that for all .
We establish a decomposition of non-negative Radon measures on which extends that obtained by Strichartz [6] in the setting of -dimensional measures. As consequences, we deduce some well-known properties concerning the density of non-negative Radon measures. Furthermore, some properties of non-negative Radon measures having their Riesz potential in a Lebesgue space are obtained.
Mark Kac gave an example of a function f on the unit interval such that f cannot be written as f(t)=g(2t)-g(t) with an integrable function g, but the limiting variance of vanishes. It is proved that there is no measurable g such that f(t)=g(2t)-g(t). It is also proved that there is a non-measurable g which satisfies this equality.