Padé and Hermite-Padé approximation and orthogonality.
In this paper we survey some recent results in connection with the so called Painlevé's problem and the semiadditivity of analytic capacity γ. In particular, we give the detailed proof of the semiadditivity of the capacity γ+, and we show almost completely all the arguments for the proof of the comparability between γ and γ+.
G. David, J.-L. Journé and S. Semmes have shown that if b1 and b2 are para-accretive functions on Rn, then the Tb theorem holds: A linear operator T with Calderón-Zygmund kernel is bounded on L2 if and only if Tb1 ∈ BMO, T*b2 ∈ BMO and Mb2TMb1 has the weak boundedness property. Conversely they showed that when b1 = b2 = b, para-accretivity of b is necessary for Tb Theorem to hold. In this paper we show that para-accretivity of both b1 and b2 is necessary for the Tb Theorem to hold in general. In...
In this paper, we study the the parabolic Marcinkiewicz integral [...] MΩ,hρ1,ρ2 on product domains Rn × Rm (n, m ≥ 2). Lp estimates of such operators are obtained under weak conditions on the kernels. These estimates allow us to use an extrapolation argument to obtain some new and improved results on parabolic Marcinkiewicz integral operators.
Parabolic wavelet transforms associated with the singular heat operators and , where , are introduced. These transforms are defined in terms of the relevant generalized translation operator. An analogue of the Calderón reproducing formula is established. New inversion formulas are obtained for generalized parabolic potentials representing negative powers of the singular heat operators.
In this paper, the author introduces parabolic generalized local Morrey spaces and gets the boundedness of a large class of parabolic rough operators on them. The author also establishes the parabolic local Campanato space estimates for their commutators on parabolic generalized local Morrey spaces. As its special cases, the corresponding results of parabolic sublinear operators with rough kernel and their commutators can be deduced, respectively. At last, parabolic Marcinkiewicz operator which...
Let 1 ≤ p ≤ ∞ and let be two weights on the unit circle such that . We prove that the couple of weighted Hardy spaces is a partial retract of . This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.
We study the maximal regularity on different function spaces of the second order integro-differential equations with infinite delay (0 ≤ t ≤ 2π) with periodic boundary conditions u(0) = u(2π), u’(0) = u’(2π), where A is a closed operator in a Banach space X, α ∈ ℂ, and a,b ∈ L¹(ℝ₊). We use Fourier multipliers to characterize maximal regularity for (P). Using known results on Fourier multipliers, we find suitable conditions on the kernels a and b under which necessary and sufficient conditions...
We investigate properties of permitted trigonometric thin sets and construct uncountable permitted sets under some set-theoretical assumptions.
For a smooth curve and a set in the plane , let be the space of finite Borel measures in the plane supported on , absolutely continuous with respect to the arc length and whose Fourier transform vanishes on . Following [12], we say that is a Heisenberg uniqueness pair if . In the context of a hyperbola , the study of Heisenberg uniqueness pairs is the same as looking for uniqueness sets of a collection of solutions to the Klein-Gordon equation. In this work, we mainly address the...