The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this partly expository paper we study van der Corput sets in , with a focus on connections with harmonic analysis and recurrence properties of measure preserving dynamical systems. We prove multidimensional versions of some classical results obtained for d = 1 by Kamae and M. Mendès France and by Ruzsa, establish new characterizations, introduce and discuss some modifications of van der Corput sets which correspond to various notions of recurrence, provide numerous examples and formulate some...
In this paper, we are going to characterize the space through variable Lebesgue spaces and Morrey spaces. There have been many attempts to characterize the space by using various function spaces. For example, Ho obtained a characterization of with respect to rearrangement invariant spaces. However, variable Lebesgue spaces and Morrey spaces do not appear in the characterization. One of the reasons is that these spaces are not rearrangement invariant. We also obtain an analogue of the well-known...
Le théorème CRT dit comment reconstruire un signal à partir d’un échantillonnage de fréquences parcimonieux. L’hypothèse sur le signal, considéré comme porté par un groupe cyclique d’ordre , est qu’il est porté par un petit nombre de points, , et la méthode est de choisir aléatoirement fréquences et de minimiser dans l’algèbre de Wiener le prolongement à de la transformée de Fourier du signal réduite à ces fréquences. Quand est grand, la probabilité de reconstruire le signal est voisine...
The purposes of this paper may be described as follows:(i) to provide a useful substitute for the Cotlar-Stein lemma for Lp-spaces (the orthogonality conditions are replaced by certain fairly weak smoothness asumptions);(ii) to investigate the gap between the Hörmander multiplier theorem and the Littman-McCarthy-Rivière example - just how little regularity is really needed?(iii) to simplify and extend the work of Duoandikoetxea and Rubio de Francia and Christ and Stein, which sometimes has unnecessarily...
For integers and , we prove that an -dimensional Ahlfors-David regular measure in is uniformly -rectifiable if and only if the -variation for the Riesz transform with respect to is a bounded operator in . This result can be considered as a partial solution to a well known open problem posed by G. David and S. Semmes which relates the boundedness of the Riesz transform to the uniform rectifiability of .
In these notes we survey some new results concerning the -variation for singular integral operators defined on Lipschitz graphs. Moreover, we investigate the relationship between variational inequalities for singular integrals on AD regular measures and geometric properties of these measures. An overview of the main results and applications, as well as some ideas of the proofs, are given.
We consider the multiplier defined for ξ ∈ ℝ by
,
D denoting the open unit disk in ℝ. Given p ∈ ]1,∞[, we show that the optimal range of μ’s for which is a Fourier multiplier on is the same as for Bochner-Riesz means. The key ingredient is a lemma about some modifications of Bochner-Riesz means inside convex regions with smooth boundary and non-vanishing curvature, providing a more flexible version of a result by Iosevich et al. [Publ. Mat. 46 (2002)]. As an application, we show that the...
In this article we consider a theory of vector valued strongly singular operators. Our results include Lp, Hp and BMO continuity results. Moreover, as is well known, vector valued estimates are closely related to weighted norm inequalities. These results are developed in the first four sections of our paper. In section 5 we use our vector valued singular integrals to estimate the corresponding maximal operators. Finally in section 6 we discuss applications to weighted norm inequalities for pseudo-differential...
Some conditions implying vector-valued inequalities for the commutator of a fractional integral and a fractional maximal operator are established. The results obtained are substantial improvements and extensions of some known results.
This paper deals with the following problem:Let T be a given operator. Find conditions on v(x) (resp. u(x)) such that∫ |Tf(x)|pu(x) dx ≤ C ∫ |f(x)|pv(x) dxis satisfied for some u(x) (resp. v(x)).Using vector-valued inequalities the problem is solved for: Carleson's maximal operator of Fourier partial sums, Littlewood-Paley square functions, Hilbert transform of functions valued in U.M.D. Banach spaces and operators in the upper-half plane.
Vector-valued pseudo almost periodic functions are defined and their properties are investigated. The vector-valued functions contain many known functions as special cases. A unique decomposition theorem is given to show that a vector-valued pseudo almost periodic function is a sum of an almost periodic function and an ergodic perturbation.
The vector-valued T(1) theorem due to Figiel, and a certain square function estimate of Bourgain for translations of functions with a limited frequency spectrum, are two cornerstones of harmonic analysis in UMD spaces. In this paper, a simplified approach to these results is presented, exploiting Nazarov, Treil and Volberg's method of random dyadic cubes, which allows one to circumvent the most subtle parts of the original arguments.
Currently displaying 1 –
20 of
24