Zero distribution of sequences of classical orthogonal polynomials.
We develop a new method to prove asymptotic zero distribution for different kinds of orthogonal polynomials. The method directly uses the orthogonality relations. We illustrate the procedure in four cases: classical orthogonality, non-Hermitian orthogonality, orthogonality in rational approximation of Markov functions and its non- Hermitian variant.
We present a simple criterion to decide whether the maximal function associated with a translation invariant basis of multidimensional intervals satisfies a weak type estimate. This allows us to complete Zygmund’s program of the description of the translation invariant bases of multidimensional intervals in the particular case of products of two cubic intervals. As a conjecture, we suggest a more precise version of Zygmund’s program.