Displaying 61 – 80 of 103

Showing per page

Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series

Ferenc Weisz (1996)

Studia Mathematica

The martingale Hardy space H p ( [ 0 , 1 ) 2 ) and the classical Hardy space H p ( 2 ) are introduced. We prove that certain means of the partial sums of the two-parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded operators from H p to L p (0 < p ≤ 1). As a consequence we obtain strong convergence theorems for the partial sums. The classical Hardy-Littlewood inequality is extended to two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequalities are also verified and a...

Two-parameter Hardy-Littlewood inequalities

Ferenc Weisz (1996)

Studia Mathematica

The inequality (*) ( | n | = 1 | m | = 1 | n m | p - 2 | f ̂ ( n , m ) | p ) 1 / p C p ƒ H p (0 < p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space H p on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in L p whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series...

Uniform convergence of double trigonometric series

Chang-Pao Chen, Gwo-Bin Chen (1996)

Studia Mathematica

It is shown that under certain conditions on c j k , the rectangular partial sums s m n ( x , y ) converge uniformly on T 2 . These conditions include conditions of bounded variation of order (1,0), (0,1), and (1,1) with the weights |j|, |k|, |jk|, respectively. The convergence rate is also established. Corresponding to the mentioned conditions, an analogous condition for single trigonometric series is | k | = n | Δ c k | = o ( 1 / n ) (as n → ∞). For O-regularly varying quasimonotone sequences, we prove that it is equivalent to the condition: n c n = o ( 1 ) as...

Weighted integrability and L¹-convergence of multiple trigonometric series

Chang-Pao Chen (1994)

Studia Mathematica

We prove that if c j k 0 as max(|j|,|k|) → ∞, and | j | = 0 ± | k | = 0 ± θ ( | j | ) ϑ ( | k | ) | Δ 12 c j k | < , then f(x,y)ϕ(x)ψ(y) ∈ L¹(T²) and T ² | s m n ( x , y ) - f ( x , y ) | · | ϕ ( x ) ψ ( y ) | d x d y 0 as min(m,n) → ∞, where f(x,y) is the limiting function of the rectangular partial sums s m n ( x , y ) , (ϕ,θ) and (ψ,ϑ) are pairs of type I. A generalization of this result concerning L¹-convergence is also established. Extensions of these results to double series of orthogonal functions are also considered. These results can be extended to n-dimensional case. The aforementioned results generalize work of Balashov [1], Boas [2],...

Weighted integrability of double cosine series with nonnegative coefficients

Chang-Pao Chen, Ming-Chuan Chen (2003)

Studia Mathematica

Let f c ( x , y ) j = 1 k = 1 a j k ( 1 - c o s j x ) ( 1 - c o s k y ) with a j k 0 for all j,k ≥ 1. We estimate the integral 0 π 0 π x α - 1 y β - 1 ϕ ( f c ( x , y ) ) d x d y in terms of the coefficients a j k , where α, β ∈ ℝ and ϕ: [0,∞] → [0,∞]. Our results can be regarded as the trigonometric analogues of those of Mazhar and Móricz [MM]. They generalize and extend Boas [B, Theorem 6.7].

Currently displaying 61 – 80 of 103