Previous Page 2

Displaying 21 – 30 of 30

Showing per page

Estimates with global range for oscillatory integrals with concave phase

Bjorn Gabriel Walther (2002)

Colloquium Mathematicae

We consider the maximal function | | ( S a f ) [ x ] | | L [ - 1 , 1 ] where ( S a f ) ( t ) ( ξ ) = e i t | ξ | a f ̂ ( ξ ) and 0 < a < 1. We prove the global estimate | | S a f | | L ² ( , L [ - 1 , 1 ] ) C | | f | | H s ( ) , s > a/4, with C independent of f. This is known to be almost sharp with respect to the Sobolev regularity s.

Existence globale pour un fluide inhomogène

Hammadi Abidi, Marius Paicu (2007)

Annales de l’institut Fourier

Dans cet article on s’intéresse à l’existence et l’unicité globale de solutions pour le système de Navier-Stokes à densité variable, lorsque la donnée initiale de la vitesse est dans l’espace de Besov homogène de régularité critique B p , 1 - 1 + N p ( N ) . Notons que ce résultat fait suite aux résultats de H. Abidi qui a généralisé le travail de R. Danchin. Toutefois, dans les travaux antérieurs, l’existence de la solution est obtenue pour 1 &lt; p &lt; 2 N et l’unicité est démontrée sous l’hypothèse plus restrictive 1 &lt; p N . Notre résultat...

Extensions of Rubio de Francia's extrapolation theorem.

David Cruz-Uribe, José María Martell, Carlos Pérez (2006)

Collectanea Mathematica

One of the main results in modern harmonic analysis is the extrapolation theorem of J. L. Rubio de Francia for Ap weights. In this paper we discuss some recent extensions of this result. We present a new approach that, among other things, allows us to obtain estimates in rearrangement-invariant Banach function spaces as well as weighted modular inequalities. We also extend this extrapolation technique to the context of A∞ weights. We apply the obtained results to the dyadic square function. Fractional...

Currently displaying 21 – 30 of 30

Previous Page 2