Displaying 201 – 220 of 227

Showing per page

One-sided discrete square function

A. de la Torre, J. L. Torrea (2003)

Studia Mathematica

Let f be a measurable function defined on ℝ. For each n ∈ ℤ we consider the average A f ( x ) = 2 - n x x + 2 f . The square function is defined as S f ( x ) = ( n = - | A f ( x ) - A n - 1 f ( x ) | ² ) 1 / 2 . The local version of this operator, namely the operator S f ( x ) = ( n = - 0 | A f ( x ) - A n - 1 f ( x ) | ² ) 1 / 2 , is of interest in ergodic theory and it has been extensively studied. In particular it has been proved [3] that it is of weak type (1,1), maps L p into itself (p > 1) and L into BMO. We prove that the operator S not only maps L into BMO but it also maps BMO into BMO. We also prove that the L p boundedness still holds...

One-weight weak type estimates for fractional and singular integrals in grand Lebesgue spaces

Vakhtang Kokilashvili, Alexander Meskhi (2014)

Banach Center Publications

We investigate weak type estimates for maximal functions, fractional and singular integrals in grand Lebesgue spaces. In particular, we show that for the one-weight weak type inequality it is necessary and sufficient that a weight function belongs to the appropriate Muckenhoupt class. The same problem is discussed for strong maximal functions, potentials and singular integrals with product kernels.

Optimal estimates for the fractional Hardy operator

Yoshihiro Mizuta, Aleš Nekvinda, Tetsu Shimomura (2015)

Studia Mathematica

Let A α f ( x ) = | B ( 0 , | x | ) | - α / n B ( 0 , | x | ) f ( t ) d t be the n-dimensional fractional Hardy operator, where 0 < α ≤ n. It is well-known that A α is bounded from L p to L p α with p α = n p / ( α p - n p + n ) when n(1-1/p) < α ≤ n. We improve this result within the framework of Banach function spaces, for instance, weighted Lebesgue spaces and Lorentz spaces. We in fact find a ’source’ space S α , Y , which is strictly larger than X, and a ’target’ space T Y , which is strictly smaller than Y, under the assumption that A α is bounded from X into Y and the Hardy-Littlewood maximal operator...

Optimality of the range for which equivalence between certain measures of smoothness holds

Z. Ditzian (2010)

Studia Mathematica

Recently it was proved for 1 < p < ∞ that ω m ( f , t ) p , a modulus of smoothness on the unit sphere, and K ̃ ( f , t m ) p , a K-functional involving the Laplace-Beltrami operator, are equivalent. It will be shown that the range 1 < p < ∞ is optimal; that is, the equivalence ω m ( f , t ) p K ̃ ( f , t r ) p does not hold either for p = ∞ or for p = 1.

Orlicz boundedness for certain classical operators

E. Harboure, O. Salinas, B. Viviani (2002)

Colloquium Mathematicae

Let ϕ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator M Ω α , associated to an open bounded set Ω, to be bounded from the Orlicz space L ψ ( Ω ) into L ϕ ( Ω ) , 0 ≤ α < n. For functions ϕ of finite upper type these results can be extended to the Hilbert transform f̃ on the one-dimensional torus and to the fractional integral operator I Ω α , 0...

Orlicz bounds for operators of restricted weak type

Paul Alton Hagelstein (2005)

Colloquium Mathematicae

It is shown that if T is a sublinear translation invariant operator of restricted weak type (1,1) acting on L¹(𝕋), then T maps simple functions in L log L(𝕋) boundedly into L¹(𝕋).

Orlicz-Morrey spaces and the Hardy-Littlewood maximal function

Eiichi Nakai (2008)

Studia Mathematica

We prove basic properties of Orlicz-Morrey spaces and give a necessary and sufficient condition for boundedness of the Hardy-Littlewood maximal operator M from one Orlicz-Morrey space to another. For example, if f ∈ L(log L)(ℝⁿ), then Mf is in a (generalized) Morrey space (Example 5.1). As an application of boundedness of M, we prove the boundedness of generalized fractional integral operators, improving earlier results of the author.

Oscillatory and Fourier integral operators with degenerate canonical relations.

Allan Greenleaf, Andreas Seeger (2002)

Publicacions Matemàtiques

We survey results concerning the L2 boundedness of oscillatory and Fourier integral operators and discuss applications. The article does not intend to give a broad overview; it mainly focuses on topics related to the work of the authors.[Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial (Madrid), 2002].

Currently displaying 201 – 220 of 227