A Fourier inequality with Ap and weak-L1 weight.
The object of this note is to generalize some Fourier inequalities.
The object of this note is to generalize some Fourier inequalities.
A given set W = W X of n-variable class C 1 functions is a gradient-projective basis if for every tempered distribution f whose gradient is square-integrable, the sum converges to f with respect to the norm . The set is not necessarily an orthonormal set; the orthonormal expansion formula is just an element of the convex set of valid expansions of the given function f over W. We construct a gradient-projective basis W = W x of compactly supported class C 2−ɛ functions on ℝn such that [...]...
A real-valued Hardy space related to the square root of the Poisson kernel in the unit disc is defined. The space is shown to be strictly larger than its classical counterpart H¹(). A decreasing function is in if and only if the function is in the Orlicz space LloglogL(). In contrast to the case of H¹(), there is no such characterization for general positive functions: every Orlicz space strictly larger than L log L() contains positive functions which do not belong to , and no Orlicz space...
Hörmander’s famous Fourier multiplier theorem ensures the -boundedness of whenever for some , where we denote by the set of functions satisfying the Hörmander condition for derivatives. Spectral multiplier theorems are extensions of this result to more general operators and yield the -boundedness of provided for some sufficiently large. The harmonic oscillator shows that in general is not sufficient even if has a heat kernel satisfying gaussian estimates. In this paper,...
Let L be a strictly elliptic second order operator on a bounded domain Ω ⊂ ℝⁿ. Let u be a solution to in Ω, u = 0 on ∂Ω. Sufficient conditions on two measures, μ and ν defined on Ω, are established which imply that the norm of |∇u| is dominated by the norms of and . If we replace |∇u| by a local Hölder norm of u, the conditions on μ and ν can be significantly weaker.
We establish the boundedness in spaces, 1 < q ≤ 2, of a “vertical” Littlewood-Paley-Stein operator associated with a reversible random walk on a graph. This result extends to certain non-reversible random walks, including centered random walks on any finitely generated discrete group.
It is proved that if satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the space on the product domain . This implies an estimate of the norm of the multiplier transformation of m on as p→1. Precisely we get . This bound is the best possible in general.
We give characterizations of weighted Besov-Lipschitz and Triebel-Lizorkin spaces with weights via a smooth kernel which satisfies “minimal” moment and Tauberian conditions. The results are stated in terms of the mixed norm of a certain maximal function of a distribution in these weighted spaces.
Using Bochner-Riesz means we get a multidimensional sampling theorem for band-limited functions with polynomial growth, that is, for functions which are the Fourier transform of compactly supported distributions.
We define a new type of multiplier operators on , where is the N-dimensional torus, and use tangent sequences from probability theory to prove that the operator norms of these multipliers are independent of the dimension N. Our construction is motivated by the conjugate function operator on , to which the theorem applies as a particular example.