The Convergence in L... of Singular Integrals in Harmonic Analysis and Ergodic Theory.
The most important results of standard Calderón-Zygmund theory have recently been extended to very general non-homogeneous contexts. In this survey paper we describe these extensions and their striking applications to removability problems for bounded analytic functions. We also discuss some of the techniques that allow us to dispense with the doubling condition in dealing with singular integrals. Special attention is paid to the Cauchy Integral.[Proceedings of the 6th International Conference on...
We establish necessary and sufficient conditions on the real- or complex-valued potential defined on for the relativistic Schrödinger operator to be bounded as an operator from the Sobolev space to its dual .
In this paper, it is proved that the Fourier integral operators of order , with , are bounded from three kinds of Hardy spaces associated with Herz spaces to their corresponding Herz spaces.
In this work we give sufficient and necessary conditions for the boundedness of the fractional integral operator acting between weighted Orlicz spaces and suitable spaces, in the general setting of spaces of homogeneous type. This result generalizes those contained in [P1] and [P2] about the boundedness of the same operator acting between weighted and Lipschitz integral spaces on . We also give some properties of the classes of pairs of weights appearing in connection with this boundedness.
We deal with the Hardy-Lorentz spaces where 0 < p ≤ 1, 0 < q ≤ ∞. We discuss the atomic decomposition of the elements in these spaces, their interpolation properties, and the behavior of singular integrals and other operators acting on them.
We prove that the Hausdorff operator generated by a function ϕ is bounded on the real Hardy space , 0 < p ≤ 1, if the Fourier transform ϕ̂ of ϕ satisfies certain smoothness conditions. As a special case, we obtain the boundedness of the Cesàro operator of order α on , 2/(2α+1) < p ≤ 1. Our proof is based on the atomic decomposition and molecular characterization of .
The purpose of this paper is to prove that the higher order Riesz transform for Gaussian measure associated with the Ornstein-Uhlenbeck differential operator , x ∈ ℝ, need not be of weak type (1,1). A function in , where dγ is the Gaussian measure, is given such that the distribution function of the higher order Riesz transform decays more slowly than C/λ.
In this paper we study the Hilbert transform and maximal function related to a curve in R2.