Displaying 41 – 60 of 62

Showing per page

Littlewood-Paley-Stein functions on complete Riemannian manifolds for 1 ≤ p ≤ 2

Thierry Coulhon, Xuan Thinh Duong, Xiang Dong Li (2003)

Studia Mathematica

We study the weak type (1,1) and the L p -boundedness, 1 < p ≤ 2, of the so-called vertical (i.e. involving space derivatives) Littlewood-Paley-Stein functions and ℋ respectively associated with the Poisson semigroup and the heat semigroup on a complete Riemannian manifold M. Without any assumption on M, we observe that and ℋ are bounded in L p , 1 < p ≤ 2. We also consider modified Littlewood-Paley-Stein functions that take into account the positivity of the bottom of the spectrum. Assuming that...

Local integrability of strong and iterated maximal functions

Paul Alton Hagelstein (2001)

Studia Mathematica

Let M S denote the strong maximal operator. Let M x and M y denote the one-dimensional Hardy-Littlewood maximal operators in the horizontal and vertical directions in ℝ². A function h supported on the unit square Q = [0,1]×[0,1] is exhibited such that Q M y M x h < but Q M x M y h = . It is shown that if f is a function supported on Q such that Q M y M x f < but Q M x M y f = , then there exists a set A of finite measure in ℝ² such that A M S f = .

Local means and wavelets in function spaces

Hans Triebel (2008)

Banach Center Publications

The paper deals with local means and wavelet bases in weighted and unweighted function spaces of type B p q s and F p q s on ℝⁿ and on ⁿ.

LP → LQ - Estimates for the Fractional Acoustic Potentials and some Related Operators

Karapetyants, Alexey, Karasev, Denis, Nogin, Vladimir (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 47B38, 31B10, 42B20, 42B15.We obtain the Lp → Lq - estimates for the fractional acoustic potentials in R^n, which are known to be negative powers of the Helmholtz operator, and some related operators. Some applications of these estimates are also given.* This paper has been supported by Russian Fond of Fundamental Investigations under Grant No. 40–01–008632 a.

Lp multipliers and their H1-L1 estimates on the Heisenberg group.

Chin-Cheng Lin (1995)

Revista Matemática Iberoamericana

We give a Hörmander-type sufficient condition on an operator-valued function M that implies the Lp-boundedness result for the operator TM defined by (TMf)^ = Mf^ on the (2n + 1)-dimensional Heisenberg group Hn. Here ^ denotes the Fourier transform on Hn defined in terms of the Fock representations. We also show the H1-L1 boundedness of TM, ||TMf||L1 ≤ C||f||H1, for Hn under the same hypotheses of Lp-boundedness.

Lp-bounds for spherical maximal operators on Zn.

Akos Magyar (1997)

Revista Matemática Iberoamericana

We prove analogue statements of the spherical maximal theorem of E. M. Stein, for the lattice points Zn. We decompose the discrete spherical measures as an integral of Gaussian kernels st,ε(x) = e2πi|x|2(t + iε). By using Minkowski's integral inequality it is enough to prove Lp-bounds for the corresponding convolution operators. The proof is then based on L2-estimates by analysing the Fourier transforms ^st,ε(ξ), which can be handled by making use of the circle method for exponential sums. As a...

Currently displaying 41 – 60 of 62