Lattice tilings by cubes: Whole, notched and extended.
Le théorème classique de Riesz-Raikov assure que, pour tout entier et toute de , où , les moyennespour presque tout point de . J.Bourgain (cf.Israël Math. Conf. Proc. 1990) a prouvé que la convergence précédente a lieu pour tout réel algébrique et toute de . Dans cet article nous prouvons que, si est un endomorphisme de algébrique sur , dont les valeurs propres sont toutes de module , alors pour toute de , les moyennes convergent vers pour presque tout point de . Nous...
The estimate is shown to hold if and only if is elliptic and canceling. Here is a homogeneous linear differential operator of order on from a vector space to a vector space . The operator is defined to be canceling if . This result implies in particular the classical Gagliardo–Nirenberg–Sobolev inequality, the Korn–Sobolev inequality and Hodge–Sobolev estimates for differential forms due to J. Bourgain and H. Brezis. In the proof, the class of cocanceling homogeneous linear differential...
We study continuity envelopes of function spaces and where the weight belongs to the Muckenhoupt class ₁. This essentially extends partial forerunners in [13, 14]. We also indicate some applications of these results.
In the setting of a metric measure space (X, d, μ) with an n-dimensional Radon measure μ, we give a necessary and sufficient condition for the boundedness of Calderón-Zygmund operators associated to the measure μ on Lipschitz spaces on the support of μ. Also, for the Euclidean space Rd with an arbitrary Radon measure μ, we give several characterizations of Lipschitz spaces on the support of μ, Lip(α,μ), in terms of mean oscillations involving μ. This allows us to view the "regular" BMO space of...
We give a characterization of the Hölder-Zygmund spaces () on a stratified Lie group in terms of Littlewood-Paley type decompositions, in analogy to the well-known characterization of the Euclidean case. Such decompositions are defined via the spectral measure of a sub-Laplacian on , in place of the Fourier transform in the classical setting. Our approach mainly relies on almost orthogonality estimates and can be used to study other function spaces such as Besov and Triebel-Lizorkin spaces...
Let be a closed null set. We prove an equivalence between the Littlewood-Paley decomposition in with respect to the complementary intervals of and Fourier multipliers of Hörmander-Mihlin and Marcinkiewicz type with singularities on . Similar properties are studied in for a union of rays from the origin. Then there are connections with the maximal function operator with respect to all rectangles parallel to these rays. In particular, this maximal operator is proved to be bounded on , ,...
For certain non compact Riemannian manifolds with ends which may or may not satisfy the doubling condition on the volume of geodesic balls, we obtain Littlewood-Paley type estimates on (weighted) spaces, using the usual square function defined by a dyadic partition.
Let 𝔾 be a homogeneousgroup on ℝⁿ whose multiplication and inverse operations are polynomial maps. In 1999, T. Tao proved that the singular integral operator with Llog⁺L function kernel on ≫ is both of type (p,p) and of weak type (1,1). In this paper, the same results are proved for the Littlewood-Paley g-functions on 𝔾