The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
110
Many problems in analysis are described as weighted norm inequalities that have given rise to different classes of weights, such as -weights of Muckenhoupt and -weights of Ariño and Muckenhoupt. Our purpose is to show that different classes of weights are related by means of composition with classical transforms. A typical example is the family of weights w for which the Hardy transform is -bounded. A -weight is precisely one for which its Hardy transform is in , and also a weight whose indefinite...
We prove some weighted endpoint estimates for some multilinear operators related to certain singular integral operators on Herz and Herz type Hardy spaces.
We characterize geometric properties of a family of approach regions by means of analytic properties of the class of weights related to the boundedness of the maximal operator associated with this family.
Recently, F. Nazarov, S. Treil and A. Volberg (and independently X. Tolsa) have extended the classical theory of Calderón-Zygmund operators to the context of a non-homogeneous space (X,d,μ) where, in particular, the measure μ may be non-doubling. In the present work we study weighted inequalities for these operators. Specifically, for 1 < p < ∞, we identify sufficient conditions for the weight on one side, which guarantee the existence of another weight in the other side, so that the...
We prove weighted inequalities for commutators of one-sided singular integrals (given by a Calder’on-Zygmund kernel with support in ) with BMO functions. We give the one-sided version of the results in C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., vol. 3 (6), 1997, pages 743–756 and C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., vol 128 (1), 1995, pages...
In this paper we study integral operators of the form
Let be the maximal operator defined by , where g is a positive locally integrable function on ℝ. Let Φ be an N-function such that both Φ and its complementary N-function satisfy . We characterize the pairs of positive functions (u,ω) such that the weak type inequality holds for every ⨍ in the Orlicz space . We also characterize the positive functions ω such that the integral inequality holds for every . Our results include some already obtained for functions in and yield as consequences...
Weighted inequalities for some square functions are studied. L² results are proved first using the particular structure of the operator and then extrapolation of weights is applied to extend the results to other spaces. In particular, previous results for square functions with rough kernel are obtained in a simpler way and extended to a larger class of weights.
In this paper we study integral operators with kernels
We prove weighted inequalities for square functions of Littlewood-Paley type defined from a decomposition of the plane into sectors of lacunary aperture and for the maximal function over a lacunary set of directions. Some applications to multiplier theorems are also given.
Currently displaying 41 –
60 of
110