Confirmation of Matheron's conjecture on the covariogram of a planar convex body
Using characteristic functions of polyhedra, we construct radial p-multipliers which are continuous over but not continuously differentiable through and give a p-multiplier criterion for homogeneous functions over . We also exhibit fractal p-multipliers over the real line.
Let be a collection of bounded open sets in ℝⁿ such that, for any x ∈ ℝⁿ, there exists a set U ∈ of arbitrarily small diameter containing x. The collection is said to be a density basis provided that, given a measurable set A ⊂ ℝⁿ, for a.e. x ∈ ℝⁿ we have for any sequence of sets in containing x whose diameters tend to 0. The geometric maximal operator associated to is defined on L¹(ℝⁿ) by . The halo function ϕ of is defined on (1,∞) by and on [0,1] by ϕ(u) = u. It is shown that the halo...
In this paper, we obtain some strong and weak type continuity properties for the maximal operator associated with the commutator of the Bochner-Riesz operator on Hardy spaces, Hardy type spaces and weak Hardy type spaces.
In this work we define and study wavelets and continuous wavelet transform on semisimple Lie groups G of real rank l. We prove for this transform Plancherel and inversion formulas. Next using the Abel transform A on G and its dual A*, we give relations between the continuous wavelet transform on G and the classical continuous wavelet transform on Rl, and we deduce the formulas which give the inverse operators of the operators A and A*.
For the Schrödinger equation, on a torus, an arbitrary non-empty open set provides control and observability of the solution: . We show that the same result remains true for where , and is a (rational or irrational) torus. That extends the results of [1], and [8] where the observability was proved for and conjectured for . The higher dimensional generalization remains open for .
We prove some extrapolation results for operators bounded on radial functions with p ∈ (p₀,p₁) and deduce some endpoint estimates. We apply our results to prove the almost everywhere convergence of the spherical partial Fourier integrals and to obtain estimates on maximal Bochner-Riesz type operators acting on radial functions in several weighted spaces.
We study the boundedness in of the projections onto spaces of functions with spectrum contained in horizontal strips. We obtain some results concerning convergence along nonisotropic regions of harmonic extensions of functions in with spectrum included in these horizontal strips.