Displaying 81 – 100 of 185

Showing per page

A semi-discrete Littlewood-Paley inequality

J. M. Wilson (2002)

Studia Mathematica

We apply a decomposition lemma of Uchiyama and results of the author to obtain good weighted Littlewood-Paley estimates for linear sums of functions satisfying reasonable decay, smoothness, and cancellation conditions. The heart of our application is a combinatorial trick treating m-fold dilates of dyadic cubes. We use our estimates to obtain new weighted inequalities for Bergman-type spaces defined on upper half-spaces in one and two parameters, extending earlier work of R. L. Wheeden and the author....

A sharp correction theorem

S. Kisliakov (1995)

Studia Mathematica

Under certain conditions on a function space X, it is proved that for every L -function f with f 1 one can find a function φ, 0 ≤ φ ≤ 1, such that φf ∈ X, m e s φ 1 ɛ f 1 and φ f X c o n s t ( 1 + l o g ɛ - 1 ) . For X one can take, e.g., the space of functions with uniformly bounded Fourier sums, or the space of L -functions on n whose convolutions with a fixed finite collection of Calderón-Zygmund kernels are also bounded.

A sharp estimate for bilinear Littlewood-Paley operator.

Lanzhe Liu (2005)

RACSAM

Se establece una estimación fina para el operador bilineal de Littlewood-Paley. Como aplicación se obtienen desigualdades para la norma ponderada y estimaciones del tipo L log L para el operador bilineal.

A sharp estimate for the Hardy-Littlewood maximal function

Loukas Grafakos, Stephen Montgomery-Smith, Olexei Motrunich (1999)

Studia Mathematica

The best constant in the usual L p norm inequality for the centered Hardy-Littlewood maximal function on 1 is obtained for the class of all “peak-shaped” functions. A function on the line is called peak-shaped if it is positive and convex except at one point. The techniques we use include variational methods.

A sharp rearrangement inequality for the fractional maximal operator

A. Cianchi, R. Kerman, B. Opic, L. Pick (2000)

Studia Mathematica

We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of ⨍, M γ , by an expression involving the nonincreasing rearrangement of ⨍. This estimate is used to obtain necessary and sufficient conditions for the boundedness of M γ between classical Lorentz spaces.

A stability result on Muckenhoupt's weights.

Juha Kinnunen (1998)

Publicacions Matemàtiques

We prove that Muckenhoupt's A1-weights satisfy a reverse Hölder inequality with an explicit and asymptotically sharp estimate for the exponent. As a by-product we get a new characterization of A1-weights.

A stable method for the inversion of the Fourier transform in R N

Leonede De Michele, Delfina Roux (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A general method is given for recovering a function f : R N C , N 1 , knowing only an approximation of its Fourier transform.

A strong convergence theorem for H¹(𝕋ⁿ)

Feng Dai (2006)

Studia Mathematica

Let ⁿ denote the usual n-torus and let S ̃ u δ ( f ) , u > 0, denote the Bochner-Riesz means of order δ > 0 of the Fourier expansion of f ∈ L¹(ⁿ). The main result of this paper states that for f ∈ H¹(ⁿ) and the critical index α: = (n-1)/2, l i m R 1 / l o g R 0 R ( | | S ̃ u α ( f ) - f | | H ¹ ( ) ) / ( u + 1 ) d u = 0 .

A subelliptic Bourgain–Brezis inequality

Yi Wang, Po-Lam Yung (2014)

Journal of the European Mathematical Society

We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space N L ˙ 1 , Q by L functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for on the Heisenberg group n .

Currently displaying 81 – 100 of 185