Displaying 101 – 120 of 185

Showing per page

A two weight weak inequality for potential type operators

Vachtang Michailovič Kokilashvili, Jiří Rákosník (1991)

Commentationes Mathematicae Universitatis Carolinae

We give conditions on pairs of weights which are necessary and sufficient for the operator T ( f ) = K * f to be a weak type mapping of one weighted Lorentz space in another one. The kernel K is an anisotropic radial decreasing function.

A two-weight inequality for the Bessel potential operator

Yves Rakotondratsimba (1997)

Commentationes Mathematicae Universitatis Carolinae

Necessary conditions and sufficient conditions are derived in order that Bessel potential operator J s , λ is bounded from the weighted Lebesgue spaces L v p = L p ( n , v ( x ) d x ) into L u q when 1 < p q < .

A variant sharp estimate for multilinear singular integral operators

Guoen Hu, Dachun Yang (2000)

Studia Mathematica

We establish a variant sharp estimate for multilinear singular integral operators. As applications, we obtain the weighted norm inequalities on general weights and certain L l o g + L type estimates for these multilinear operators.

A variation norm Carleson theorem

Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, James Wright (2012)

Journal of the European Mathematical Society

We strengthen the Carleson-Hunt theorem by proving L p estimates for the r -variation of the partial sum operators for Fourier series and integrals, for r > 𝚖𝚊𝚡 { p ' , 2 } . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.

A wavelet characterization for weighted Hardy spaces.

Si Jue Wu (1992)

Revista Matemática Iberoamericana

In this article we give a wavelet area integral characterization for weighted Hardy spaces Hp(ω), 0 &lt; p &lt; ∞, with ω ∈ A∞. Our wavelet characterization establishes the identification between Hp(ω) and T2p (ω), the weighted discrete tent space, for 0 &lt; p &lt; ∞ and ω ∈ A∞. This allows us to use all the results of tent spaces for weighted Hardy spaces. In particular, we obtain the isomorphism between Hp(ω) and the dual space of Hp'(ω), where 1&lt; p &lt; ∞ and 1/p +...

A weak molecule condition for certain Triebel-Lizorkin spaces

Steve Hofmann (1992)

Studia Mathematica

A weak molecule condition is given for the Triebel-Lizorkin spaces Ḟ_p^{α,q}, with 0 < α < 1 and 1 < p, q < ∞. As an easy corollary, one may deduce, by atomic-molecular methods, a Triebel-Lizorkin space "T1" Theorem of Han and Sawyer, and Han, Jawerth, Taibleson and Weiss, for Calderón-Zygmund kernels K(x,y) which are not assumed to satisfy any regularity condition in the y variable.

A weighted version of Journé's lemma.

Donald Krug, Alberto Torchinsky (1994)

Revista Matemática Iberoamericana

In this paper we discuss a weighted version of Journé's covering lemma, a substitution for Whitney decomposition of an open set in R2 where squares are replaced by rectangles. We then apply this result to obtain a sharp version of the atomic decomposition of the weighted Hardy spaces Hu'p (R+2 x R+2) and a description of their duals when p is close to 1.

A₁-regularity and boundedness of Calderón-Zygmund operators

Dmitry V. Rutsky (2014)

Studia Mathematica

The Coifman-Fefferman inequality implies quite easily that a Calderón-Zygmund operator T acts boundedly in a Banach lattice X on ℝⁿ if the Hardy-Littlewood maximal operator M is bounded in both X and X'. We establish a converse result under the assumption that X has the Fatou property and X is p-convex and q-concave with some 1 < p, q < ∞: if a linear operator T is bounded in X and T is nondegenerate in a certain sense (for example, if T is a Riesz transform) then M is bounded in both X and...

Currently displaying 101 – 120 of 185