One-Sided Littlewood-Paley Theory.
We investigate weak type estimates for maximal functions, fractional and singular integrals in grand Lebesgue spaces. In particular, we show that for the one-weight weak type inequality it is necessary and sufficient that a weight function belongs to the appropriate Muckenhoupt class. The same problem is discussed for strong maximal functions, potentials and singular integrals with product kernels.
Fefferman-Stein, Wainger and Sjölin proved optimal boundedness for certain oscillating multipliers on . In this article, we prove an analogue of their result on a compact Lie group.
Let be the n-dimensional fractional Hardy operator, where 0 < α ≤ n. It is well-known that is bounded from to with when n(1-1/p) < α ≤ n. We improve this result within the framework of Banach function spaces, for instance, weighted Lebesgue spaces and Lorentz spaces. We in fact find a ’source’ space , which is strictly larger than X, and a ’target’ space , which is strictly smaller than Y, under the assumption that is bounded from X into Y and the Hardy-Littlewood maximal operator...
Recently it was proved for 1 < p < ∞ that , a modulus of smoothness on the unit sphere, and , a K-functional involving the Laplace-Beltrami operator, are equivalent. It will be shown that the range 1 < p < ∞ is optimal; that is, the equivalence does not hold either for p = ∞ or for p = 1.
Let ϕ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator , associated to an open bounded set Ω, to be bounded from the Orlicz space into , 0 ≤ α < n. For functions ϕ of finite upper type these results can be extended to the Hilbert transform f̃ on the one-dimensional torus and to the fractional integral operator , 0...
It is shown that if T is a sublinear translation invariant operator of restricted weak type (1,1) acting on L¹(𝕋), then T maps simple functions in L log L(𝕋) boundedly into L¹(𝕋).
We prove basic properties of Orlicz-Morrey spaces and give a necessary and sufficient condition for boundedness of the Hardy-Littlewood maximal operator M from one Orlicz-Morrey space to another. For example, if f ∈ L(log L)(ℝⁿ), then Mf is in a (generalized) Morrey space (Example 5.1). As an application of boundedness of M, we prove the boundedness of generalized fractional integral operators, improving earlier results of the author.
We survey results concerning the L2 boundedness of oscillatory and Fourier integral operators and discuss applications. The article does not intend to give a broad overview; it mainly focuses on topics related to the work of the authors.[Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial (Madrid), 2002].