Displaying 1161 – 1180 of 1635

Showing per page

Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications

José María Martell (2004)

Studia Mathematica

In the context of the spaces of homogeneous type, given a family of operators that look like approximations of the identity, new sharp maximal functions are considered. We prove a good-λ inequality for Muckenhoupt weights, which leads to an analog of the Fefferman-Stein estimate for the classical sharp maximal function. As a consequence, we establish weighted norm estimates for certain singular integrals, defined on irregular domains, with Hörmander conditions replaced by some estimates which do...

Sharp one-weight and two-weight bounds for maximal operators

Kabe Moen (2009)

Studia Mathematica

We investigate the boundedness of the fractional maximal operator with respect to a general basis on weighted Lebesgue spaces. We characterize the boundedness of these operators for one-weight and two-weight inequalities extending the work of Jawerth. A new two-weight testing condition for the fractional maximal operator on a general basis is introduced extending the work of Sawyer for the basis of cubes. We also find the sharp dependence in the two-weight case between the operator norm and the...

Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates

Peng Chen (2013)

Colloquium Mathematicae

We consider an abstract non-negative self-adjoint operator L acting on L²(X) which satisfies Davies-Gaffney estimates. Let H L p ( X ) (p > 0) be the Hardy spaces associated to the operator L. We assume that the doubling condition holds for the metric measure space X. We show that a sharp Hörmander-type spectral multiplier theorem on H L p ( X ) follows from restriction-type estimates and Davies-Gaffney estimates. We also establish a sharp result for the boundedness of Bochner-Riesz means on H L p ( X ) .

Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms

Adam Osękowski (2014)

Open Mathematics

We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of Lévy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on ℝd. The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures...

Simmetrizzazione e disuguaglianze di tipo Pòlya-Szegö

Nicola Fusco (2005)

Bollettino dell'Unione Matematica Italiana

Si presentano alcuni risultati recenti riguardanti la disuguaglianza di Pòlya- Szegö e la caratterizzazione dei casi in cui essa si riduce ad un'uguaglianza. Particolare attenzione viene rivolta alla simmetrizzazione di Steiner di insiemi di perimetro finito e di funzioni di Sobolev.

Singular integral characterization of nonisotropic generalized BMO spaces

Raquel Crescimbeni (2007)

Commentationes Mathematicae Universitatis Carolinae

We extend a result of Coifman and Dahlberg [Singular integral characterizations of nonisotropic H p spaces and the F. and M. Riesz theorem, Proc. Sympos. Pure Math., Vol. 35, pp. 231–234; Amer. Math. Soc., Providence, 1979] on the characterization of H p spaces by singular integrals of n with a nonisotropic metric. Then we apply it to produce singular integral versions of generalized BMO spaces. More precisely, if T λ is the family of dilations in n induced by a matrix with a nonnegative eigenvalue, then...

Singular integral operators on Nakano spaces with weights having finite sets of discontinuities

Alexei Yu. Karlovich (2011)

Banach Center Publications

In 1968, Gohberg and Krupnik found a Fredholm criterion for singular integral operators of the form aP + bQ, where a,b are piecewise continuous functions and P,Q are complementary projections associated to the Cauchy singular integral operator, acting on Lebesgue spaces over Lyapunov curves. We extend this result to the case of Nakano spaces (also known as variable Lebesgue spaces) with certain weights having finite sets of discontinuities on arbitrary Carleson curves.

Singular integral operators with non-smooth kernels on irregular domains.

Xuan Thinh Duong, Alan McIntosh (1999)

Revista Matemática Iberoamericana

Let χ be a space of homogeneous type. The aims of this paper are as follows.i) Assuming that T is a bounded linear operator on L2(χ), we give a sufficient condition on the kernel of T such that T is of weak type (1,1), hence bounded on Lp(χ) for 1 < p ≤ 2; our condition is weaker then the usual Hörmander integral condition.ii) Assuming that T is a bounded linear operator on L2(Ω) where Ω is a measurable subset of χ, we give a sufficient condition on the kernel of T so that T is of weak type...

Singular integrals and rectifiability.

Pertti Mattila (2002)

Publicacions Matemàtiques

We shall discuss singular integrals on lower dimensional subsets of Rn. A survey of this topic was given in [M4]. The first part of this paper gives a quick review of some results discussed in [M4] and a survey of some newer results and open problems. In the second part we prove some results on the Riesz kernels in Rn. As far as I know, they have not been explicitly stated and proved, but they are very closely related to some earlier results and methods.[Proceedings of the 6th International Conference...

Singular integrals and the Newton diagram.

Anthony Carbery, Stephen Wainger, James Wright (2006)

Collectanea Mathematica

We examine several scalar oscillatory singular integrals involving a real-analytic phase function φ(s,t) of two real variables and illustrate how one can use the Newton diagram of φ to efficiently analyse these objects. We use these results to bound certain singular integral operators.

Currently displaying 1161 – 1180 of 1635