The search session has expired. Please query the service again.
Following Beurling's ideas concerning sampling and interpolation in the Paley-Wiener space Lτ∞, we find necessary and sufficient density conditions for sets of sampling and interpolation in the Paley-Wiener spaces Lτp for 0 < p ≤ 1.
We extend results on constructing semiorthogonal linear spline prewavelet systems in one and two dimensions to the case of irregular dyadic refinement. In the one-dimensional case, we obtain sharp two-sided inequalities for the -condition, 1 < p < ∞, of such systems.
Solution of a boundary value problem is often realized as the application of the
Galerkin method to the weak formulation of given problem. It is possible to generate a trial space by means of splines or by means of functions that are not polynomial and have compact support. We restrict our attention only to RKP shape functions and compactly supported wavelets. Common features and comparison
of approximation properties of these functions will be studied in the contribution.
By a straightforward computation we obtain eigenvalue estimates for Toeplitz operators related to the two standard reproducing formulas of the wavelet theory. Our result extends the estimates for Calderón-Toeplitz operators obtained by Rochberg in [R2]. In the first section we recall two standard reproducing formulas of the wavelet theory, we define Toeplitz operators and discuss some of their properties. The second section contains precise statements of our results and their proofs. At the end...
The affine systems generated by Ψ ⊂ L2(Rn) are the systemsAA(Ψ) = {DjA Tk Ψ : j ∈ Z, k ∈ Zn},where Tk are the translations, and DA the dilations with respect to an invertible matrix A. As shown in [5], there is a simple characterization for those affine systems that are a Parseval frame for L2(Rn). In this paper, we correct an error in the proof of the characterization result from [5], by redefining the class of not-necessarily expanding dilation matrices for which this characterization result holds....
Dedicated to the memory of our colleague Vasil Popov January 14, 1942 – May 31, 1990
* Partially supported by ISF-Center of Excellence, and by The Hermann Minkowski Center for Geometry at Tel Aviv University, IsraelAttempts at extending spline subdivision schemes to operate
on compact sets are reviewed. The aim is to develop a procedure for
approximating a set-valued function with compact images from a finite set of
its samples. This is motivated by the problem of reconstructing a 3D object
from...
Currently displaying 1 –
20 of
24