Factoring Wavelet Transforms into Lifting Steps.
The theory of convergence for (non-stationary) scaling functions and the approximation of interpolating scaling filters by means of Bernstein polynomials, allow us to construct a non-stationary interpolating scaling function with interesting approximation properties.
We construct wavelet-type frames associated with the expansive matrix dilation on the Anisotropic Triebel-Lizorkin spaces. We also show the a.e. convergence of the frame expansion which includes multi-wavelet expansion as a special case.
We consider two types of Besov spaces on the closed snowflake, defined by traces and with the help of the homeomorphic map from the interval [0,3]. We compare these spaces and characterize them in terms of Daubechies wavelets.