The operator remainder in the Euler-Maclaurin formula.
Let A be the class of all real-analytic functions and β the class of all Boehmians. We show that there is no continuous operation on β which is ordinary multiplication when restricted to A.
In this paper we propose an original approach for the simulation of the time-dependent response of a floating elastic plate using the so-called Singularity Expansion Method. This method consists in computing an asymptotic behaviour for large time obtained by means of the Laplace transform by using the analytic continuation of the resolvent of the problem. This leads to represent the solution as the sum of a discrete superposition of exponentially damped oscillating motions associated to the poles...
This paper is a continuation of our previous investigations on the truncated matrix trigonometric moment problem in Ukrainian Math. J., 2011, 63, no. 6, 786-797, and Ukrainian Math. J., 2013, 64, no. 8, 1199- 1214. In this paper we shall study the truncated matrix trigonometric moment problem with an additional constraint posed on the matrix measure MT(δ), δ ∈ B(T), generated by the seeked function M(x): MT(∆) = 0, where ∆ is a given open subset of T (called a gap). We present necessary and sufficient...
An integral transform denoted by that generalizes the well-known Laplace and Meijer transformations, is studied in this paper on certain spaces of generalized functions introduced by A.C. McBride by employing the adjoint method.