Fourier method for Laplace transform inversion.
MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99The fractional calculus of the P-transform or pathway transform which is a generalization of many well known integral transforms is studied. The Mellin and Laplace transforms of a P-transform are obtained. The composition formulae for the various fractional operators such as Saigo operator, Kober operator and Riemann-Liouville fractional integral and differential operators with P-transform are proved. Application of the P-transform in reaction rate...
In the earlier paper [Proc. Amer. Math. Soc. 135 (2007)], we studied solutions g: ℕ → ℂ to convolution equations of the form , where are given arithmetic functions associated with Dirichlet series which converge on some right half plane, and also g is required to be such a function. In this article, we extend our previous results to multidimensional general Dirichlet series of the form (), where is an additive subsemigroup. If X is discrete and a certain solvability criterion is satisfied,...
We establish an inversion formula of Post-Widder type for -multiplied vector-valued Laplace transforms (α > 0). This result implies an inversion theorem for resolvents of generators of α-times integrated families (semigroups and cosine functions) which, in particular, provides a unified proof of previously known inversion formulae for α-times integrated semigroups.
In order to use the well known representation of the Mellin transform as a combination of two Laplace transforms, the inverse function is represented as an expansion of Laguerre polynomials with respect to the variable . The Mellin transform of the series can be written as a Laurent series. Consequently, the coefficients of the numerical inversion procedure can be estimated. The discrete least squares approximation gives another determination of the coefficients of the series expansion. The last...
In this work, a combined form of the Laplace transform method and the Adomian decomposition method is implemented to give an approximate solution of nonlinear systems of differential equations such as fish farm model with three components nutrient, fish and mussel. The technique is described and illustrated with a numerical example.