Résolubilité sur un espace riemannien symétrique
After recalling the definitions of the Abel-Radon transformation of currents and of locally residual currents, we show that the Abel-Radon transform of a locally residual current remains locally residual. Then a theorem of P. Griffiths, G. Henkin and M. Passare (cf. [7], [9] and [10]) can be formulated as follows :Let be a domain of the grassmannian variety of complex -planes in , be the corresponding linearly -concave domain of , and be a locally residual current of bidegree ....
Dans cet article, nous nous proposons d’étudier le noyau, l’image et une éventuelle formule d’inversion de la transformation de Radon réelle dans les domaines linéairement concaves. Nous rappelons que, dans , on sait reconstruire une fonction à partir de sa transformation de Radon lorsque celle-ci est connue le long de toutes les droites de l’espace. Notre propos sera, en quelque sorte, d’établir une version semi-globale de ce résultat. Nous verrons ainsi que, modulo un noyau que nous préciserons,...