Displaying 221 – 240 of 324

Showing per page

On the two weights problem for the Hilbert transform.

Nets Hawk Katz, Cristina Pereyra (1997)

Revista Matemática Iberoamericana

In this paper, we prove sufficient conditions on pairs of weights (u,v) (scalar, matrix or operator valued) so that the Hilbert transform H f(x) = p.v. ∫ [f(y) / x - y] dy,is bounded from L2(u) to L2(v).

On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces

Abdelkefi, Chokri, Sifi, Mohamed (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 44A15, 44A35, 46E30In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space.* Supported by 04/UR/15-02.

Ridgelet transform on tempered distributions

R. Roopkumar (2010)

Commentationes Mathematicae Universitatis Carolinae

We prove that ridgelet transform R : 𝒮 ( 2 ) 𝒮 ( 𝕐 ) and adjoint ridgelet transform R * : 𝒮 ( 𝕐 ) 𝒮 ( 2 ) are continuous, where 𝕐 = + × × [ 0 , 2 π ] . We also define the ridgelet transform on the space 𝒮 ' ( 2 ) of tempered distributions on 2 , adjoint ridgelet transform * on 𝒮 ' ( 𝕐 ) and establish that they are linear, continuous with respect to the weak * -topology, consistent with R , R * respectively, and they satisfy the identity ( * ) ( u ) = u , u 𝒮 ' ( 2 ) .

Currently displaying 221 – 240 of 324