Generalized Laplace transform with matrix variables.
2000 Mathematics Subject Classification: 35E45In this paper we study generalized Sobolev spaces H^sG of exponential type associated with the Dunkl operators based on the space G of test functions for generalized hyperfunctions and investigate their properties. Moreover, we introduce a class of symbols of exponential type and their associated pseudodifferential operators related to the Dunkl operators, which act naturally on H^sG.
It is well known that Hall's transformation factorizes into a composition of two isometric maps to and from a certain completion of the dual of the universal enveloping algebra of the Lie algebra of the initial Lie group. In this paper this fact will be demonstrated by exhibiting each of the maps in turn as the composition of two isometries. For the first map we use classical stochastic calculus, and in particular a stochastic analogue of the Dyson perturbation expansion. For the second map we make...
We study the Hankel transformation and Hankel convolution on spaces of distributions with exponential growth.
Connections between Hankel transforms of different order for -functions are examined. Well known are the results of Guy [Guy] and Schindler [Sch]. Further relations result from projection formulae for Bessel functions of different order. Consequences for Hankel multipliers are exhibited and implications for radial Fourier multipliers on Euclidean spaces of different dimensions indicated.
Mathematics Subject Classification: 44A15, 33D15, 81Q99This paper is devoted to study the q-Hankel transform associated with the third q-Bessel function called also Hahn-Exton function. We use the q- approximation of unit for establishing a q-inverse formula of this transform. Moreover, we establish the related q-Parseval theorem.
In this paper we give a solution of a problem posed by the second author in her book, namely, to find symmetrical integral transforms of Fourier type, generalizing the cos-Fourier (sin-Fourier) transform and the Hankel transform, and suitable for dealing with the hyper-Bessel differential operators of order m>1 , β>0, , j=1,...,m. We obtain such integral transforms corresponding to hyper-Bessel operators of even order 2m and belonging to the class of the Mellin convolution type transforms...
This paper is aimed to establish Hardy and Cowling-Price type theorems for the Fourier transform tied to a generalized Cherednik operator on the real line.
We consider pure mth order subcoercive operators with complex coefficients acting on a connected nilpotent Lie group. We derive Gaussian bounds with the correct small time singularity and the optimal large time asymptotic behaviour on the heat kernel and all its derivatives, both right and left. Further we prove that the Riesz transforms of all orders are bounded on the Lp -spaces with p ∈ (1, ∞). Finally, for second-order operators with real coefficients we derive matching Gaussian lower bounds...