Displaying 161 – 180 of 324

Showing per page

Nonconvolution transforms with oscillating kernels that map 1 0 , 1 into itself

G. Sampson (1993)

Studia Mathematica

We consider operators of the form ( Ω f ) ( y ) = ʃ - Ω ( y , u ) f ( u ) d u with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and h L (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 1 0 , 1 (= B) into itself. In particular, all operators with h ( y ) = e i | y | a , a > 0, a ≠ 1, map B into itself.

Nonexistence Results of Solutions of Semilinear Differential Inequalities with Temperal Fractional Derivative on the Heinsenberg Group

Haouam, K., Sfaxi, M. (2009)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33, 33C60, 44A15, 35K55Denoting by Dα0|t the time-fractional derivative of order α (α ∈ (0, 1)) in the sense of Caputo, and by ∆H the Laplacian operator on the (2N + 1) - dimensional Heisenberg group H^N, we prove some nonexistence results for solutions to problems of the type Dα0|tu − ∆H(au) >= |u|^p, Dα0|tu − ∆H(au) >= |v|^p, Dδ0|tv − ∆H(bv) >= |u|^q, in H^N × R+ , with a, b ∈ L ∞ (H^N × R+). For α = 1 (and δ = 1 in the case of two inequalities),...

On 1-regular ordinary differential operators

Grzegorz Łysik (2000)

Annales Polonici Mathematici

Solutions to singular linear ordinary differential equations with analytic coefficients are found in the form of Laplace type integrals.

On a testing-function space for distributions associated with the Kontorovich-Lebedev transform.

Semyon B. Yakubovich (2006)

Collectanea Mathematica

We construct a testing function space, which is equipped with the topology that is generated by Lν,p - multinorm of the differential operatorAx = x2 - x d/dx [x d/dx],and its k-th iterates Akx, where k = 0, 1, ... , and A0xφ = φ. Comparing with other testing-function spaces, we introduce in its dual the Kontorovich-Lebedev transformation for distributions with respect to a complex index. The existence, uniqueness, imbedding and inversion properties are investigated. As an application we find a solution...

On an integral transform by R. S. Phillips

Sten Bjon (2010)

Open Mathematics

The properties of a transformation f f ˜ h by R.S. Phillips, which transforms an exponentially bounded C 0-semigroup of operators T(t) to a Yosida approximation depending on h, are studied. The set of exponentially bounded, continuous functions f: [0, ∞[→ E with values in a sequentially complete L c-embedded space E is closed under the transformation. It is shown that ( f ˜ h ) k ˜ = f ˜ h + k for certain complex h and k, and that f ( t ) = lim h 0 + f ˜ h ( t ) , where the limit is uniform in t on compact subsets of the positive real line. If f is Hölder-continuous...

On bilinear Littlewood-Paley square functions.

Michael T. Lacey (1996)

Publicacions Matemàtiques

On the real line, let the Fourier transform of kn be k'n(ξ) = k'(ξ-n) where k'(ξ) is a smooth compactly supported function. Consider the bilinear operators Sn(f, g)(x) = ∫ f(x+y)g(x-y)kn(y) dy. If 2 ≤ p, q ≤ ∞, with 1/p + 1/q = 1/2, I prove thatΣ∞n=-∞ ||Sn(f,g)||22 ≤ C2||f||p2||g||q2.The constant C depends only upon k.

Currently displaying 161 – 180 of 324