Displaying 21 – 40 of 57

Showing per page

Hankel multipliers and transplantation operators

Krzysztof Stempak, Walter Trebels (1997)

Studia Mathematica

Connections between Hankel transforms of different order for L p -functions are examined. Well known are the results of Guy [Guy] and Schindler [Sch]. Further relations result from projection formulae for Bessel functions of different order. Consequences for Hankel multipliers are exhibited and implications for radial Fourier multipliers on Euclidean spaces of different dimensions indicated.

Integrated version of the Post-Widder inversion formula for Laplace transforms

José E. Galé, María M. Martínez, Pedro J. Miana (2011)

Studia Mathematica

We establish an inversion formula of Post-Widder type for λ α -multiplied vector-valued Laplace transforms (α > 0). This result implies an inversion theorem for resolvents of generators of α-times integrated families (semigroups and cosine functions) which, in particular, provides a unified proof of previously known inversion formulae for α-times integrated semigroups.

Matrix-Variate Statistical Distributions and Fractional Calculus

Mathai, A., Haubold, H. (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthdayA connection between fractional calculus and statistical distribution theory has been established by the authors recently. Some extensions of the results to matrix-variate functions were also considered. In the present article, more results on matrix-variate statistical densities and their connections to fractional calculus will be established. When considering solutions of fractional...

On Hankel Transform of Generalized Mathieu Series

Tomovski, Živorad (2009)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: Primary 33E20, 44A10; Secondary 33C10, 33C20, 44A20By using integral representations for several Mathieu type series, a number of integral transforms of Hankel type are derived here for general families of Mathieu type series. These results generalize the corresponding ones on the Fourier transforms of Mathieu type series, obtained recently by Elezovic et al. [4], Tomovski [19] and Tomovski and Vu Kim Tuan [20].

On Some Generalizations of Classical Integral Transforms

Virchenko, Nina (2012)

Mathematica Balkanica New Series

MSC 2010: 44A15, 44A20, 33C60Using the generalized confluent hypergeometric function [6] some new integral transforms are introduced. They are generalizations of some classical integral transforms, such as the Laplace, Stieltjes, Widder-potential, Glasser etc. integral transforms. The basic properties of these generalized integral transforms and their inversion formulas are obtained. Some examples are also given.

On the A -integrability of singular integral transforms

Shobha Madan (1984)

Annales de l'institut Fourier

In this article we study the weak type Hardy space of harmonic functions in the upper half plane R + n + 1 and we prove the A -integrability of singular integral transforms defined by Calderón-Zygmund kernels. This generalizes the corresponding result for Riesz transforms proved by Alexandrov.

Operational calculus and Fourier transform on Boehmians

V. Karunakaran, R. Roopkumar (2005)

Colloquium Mathematicae

We define various operations on the space of ultra Boehmians like multiplication with certain analytic functions which are Fourier transforms of compactly supported distributions, polynomials, and characters ( e i s t , s , t ) , translation, differentiation. We also prove that the Fourier transform on the space of ultra Boehmians has all the operational properties as in the classical theory.

Currently displaying 21 – 40 of 57