On the polyconvolution with the weight function for the Fourier cosine, Fourier sine, and the Kontorovich-Lebedev integral transforms.
2000 Mathematics Subject Classification: 44A15, 44A35, 46E30In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space.* Supported by 04/UR/15-02.
2000 Mathematics Subject Classification: 44A40, 44A35A direct algebraic construction of a family of operational calculi for the Euler differential operator δ = t d/dt is proposed. It extends the Mikusiński's approach to the Heaviside operational calculus for the case when the classical Duhamel convolution is replaced by the convolution ...
2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05In the paper, the machinery of the Mellin integral transform is applied to deduce and prove some operational relations for a general operator of the Erdélyi-Kober type. This integro-differential operator is a composition of a number of left-hand sided and right-hand sided Erdélyi-Kober derivatives and integrals. It is referred to in the paper as a mixed operator of the Erdélyi-Kober type. For special values of...