Series like Taylor's series.
The paper is concerned with the spectral analysis for the class of linear operators in non-archimedean Hilbert space, where is a diagonal operator and is a rank one operator. The results of this paper turn out to be a generalization of those results obtained by Diarra.
Let denote the space of all ω-ultradifferentiable functions of Roumieu type on an open interval I in ℝ. In the special case ω(t) = t we get the real-analytic functions on I. For with one can define the convolution operator , . We give a characterization of the surjectivity of for quasianalytic classes , where I = ℝ or I is an open, bounded interval in ℝ. This characterization is given in terms of the distribution of zeros of the Fourier Laplace transform of μ.