The numerical decision of one problem of dispersion with application of zero functions of Lezhandra.
The asymptotic and oscillatory behavior of solutions of Volterra summation equation and second order linear difference equation are studied.
We describe the spectrum and the essential spectrum and give an index formula for Wiener-Hopf integral operators with piecewise continuous symbols on the space Lp(R+,ω) with a Muckenhoupt weight ω. Our main result says that the essential spectrum is a set resulting from the essential range of the symbol by joining the two endpoints of each jump by a certain sickle-shaped domain, whose shape is completely determined by the value of p and the behavior of the weight ω at the origin and at infinity.