Periodic and Almost Periodic Solutions of Integral Inclusions
The existence of a continuous periodic and almost periodic solutions of the nonlinear integral inclusion is established by means of the generalized Schauder fixed point theorem.
The existence of a continuous periodic and almost periodic solutions of the nonlinear integral inclusion is established by means of the generalized Schauder fixed point theorem.
In this paper we examine periodic integrodifferential equations in Banach spaces. When the cone is regular, we prove two existence theorems for the extremal solutions in the order interval determined by an upper and a lower solution. Both theorems use only the order structure of the problem and no compactness condition is assumed. In the last section we ask the cone to be only normal but we impose a compactness condition using the ball measure of noncompactness. We obtain the extremal solutions...
We establish new existence results for nontrivial solutions of some integral inclusions of Hammerstein type, that are perturbed with an affine functional. In order to use a theory of fixed point index for multivalued mappings, we work in a cone of continuous functions that are positive on a suitable subinterval of . We also discuss the optimality of some constants that occur in our theory. We improve, complement and extend previous results in the literature.
A differential equation of the form (q(t)k(u)u')' = F(t,u)u' is considered and solutions u with u(0) = 0 are studied on the halfline [0,∞). Theorems about the existence, uniqueness, boundedness and dependence of solutions on a parameter are given.
A nonlinear differential equation of the form (q(x)k(x)u')' = F(x,u,u') arising in models of infiltration of water is considered, together with the corresponding differential equation with a positive parameter λ, (q(x)k(x)u')' = λF(x,u,u'). The theorems about existence, uniqueness, boundedness of solution and its dependence on the parameter are established.
We study the existence of positive solutions of the integral equation in both and spaces, where and . Throughout this paper is nonnegative but the nonlinearity may take negative values. The Krasnosielski fixed point theorem on cone is used.