Displaying 321 – 340 of 423

Showing per page

Qualitative investigation of nonlinear differential equations describing infiltration of water

Xingbao Wu (1995)

Annales Polonici Mathematici

A nonlinear differential equation of the form (q(x)k(x)u')' = F(x,u,u') arising in models of infiltration of water is considered, together with the corresponding differential equation with a positive parameter λ, (q(x)k(x)u')' = λF(x,u,u'). The theorems about existence, uniqueness, boundedness of solution and its dependence on the parameter are established.

Remarks on existence of positive solutions of some integral equations

Jan Ligęza (2005)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We study the existence of positive solutions of the integral equation x ( t ) = μ 0 1 k ( t , s ) f ( s , x ( s ) , x ' ( s ) , ... , x ( n - 1 ) ( s ) ) d s , n 2 in both C n - 1 [ 0 , 1 ] and W n - 1 , p [ 0 , 1 ] spaces, where p 1 and μ > 0 . Throughout this paper k is nonnegative but the nonlinearity f may take negative values. The Krasnosielski fixed point theorem on cone is used.

Second order semilinear Volterra integrodifferential equation in Banach space

Jan Bochenek (1992)

Annales Polonici Mathematici

By using the theory of strongly continuous cosine families of linear operators in Banach space the existence of solutions of some semilinear second order Volterra integrodifferential equations in Banach spaces is proved. The results are applied to some integro-partial differential equations.

Currently displaying 321 – 340 of 423