Displaying 201 – 220 of 290

Showing per page

Recent results on the Boltzmann equation

Carlo Cercignani (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the last few years the theory of the nonlinear Boltzmann equation has witnessed a veritable turrent of contributions, spurred by the basic result of DiPerna and Lions. Here we wish to survey these results with particular attention to some recent developments.

Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off.

Cédric Villani (1999)

Revista Matemática Iberoamericana

We show that in the setting of the spatially homogeneous Boltzmann equation without cut-off, the entropy dissipation associated to a function f ∈ L1(RN) yields a control of √f in Sobolev norms as soon as f is locally bounded below. Under this additional assumption of lower bound, our result is an improvement of a recent estimate given by P.-L. Lions, and is optimal in a certain sense.

Richardson extrapolation and defect correction of mixed finite element methods for integro-differential equations in porous media

Shanghui Jia, Deli Li, Tang Liu, Shu Hua Zhang (2008)

Applications of Mathematics

Asymptotic error expansions in the sense of L -norm for the Raviart-Thomas mixed finite element approximation by the lowest-order rectangular element associated with a class of parabolic integro-differential equations on a rectangular domain are derived, such that the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied to increase the accuracy of the approximations for both the vector field and the scalar field by the aid of an interpolation postprocessing...

Second order semilinear Volterra integrodifferential equation in Banach space

Jan Bochenek (1992)

Annales Polonici Mathematici

By using the theory of strongly continuous cosine families of linear operators in Banach space the existence of solutions of some semilinear second order Volterra integrodifferential equations in Banach spaces is proved. The results are applied to some integro-partial differential equations.

Semigroup Analysis of Structured Parasite Populations

J. Z. Farkas, D. M. Green, P. Hinow (2010)

Mathematical Modelling of Natural Phenomena

Motivated by structured parasite populations in aquaculture we consider a class of size-structured population models, where individuals may be recruited into the population with distributed states at birth. The mathematical model which describes the evolution of such a population is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral...

Currently displaying 201 – 220 of 290