The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 241 –
260 of
352
We extend Bolzano’s intermediate-value theorem to quasi-holomorphic maps of the space of continuous linear functionals from l p into the scalar field, (0< p<1). This space is isomorphic to l ∞.
∗ The present article was originally submitted for the second volume of Murcia Seminar on
Functional Analysis (1989). Unfortunately it has been not possible to continue with Murcia
Seminar publication anymore. For historical reasons the present vesion correspond with the original one.Weak completeness properties of Boolean rings are related to
the property of being a Baire space (when suitably topologised) and to
renorming properties of the Banach spaces of continuous functions on the
corresponding...
We show how Kirszbraun's theorem on extending Lipschitz mappings in Hilbert space implies its own generalization. There is a continuous extension operator preserving the Lipschitz constant of every mapping.
It has been shown that any Banach algebra satisfying ‖f 2‖ = ‖f‖2 has a representation as an algebra of quaternion-valued continuous functions. Whereas some of the classical theory of algebras of continuous complex-valued functions extends immediately to algebras of quaternion-valued functions, similar work has not been done to analyze how the theory of algebras of complex-valued Lipschitz functions extends to algebras of quaternion-valued Lipschitz functions. Denote by Lip(X, ) the algebra over...
We study the boundary behaviour of holomorphic functions in the Hardy-Sobolev spaces , where is a smooth, bounded convex domain of finite type in ℂⁿ, by describing the approach regions for such functions. In particular, we extend a phenomenon first discovered by Nagel-Rudin and Shapiro in the case of the unit disk, and later extended by Sueiro to the case of strongly pseudoconvex domains.
A Banach space X is called polyhedral if the unit ball of each one of its finite-dimensional (equivalently: two-dimensional [6]) subspaces is a polytope. Polyhedral spaces were studied by various authors; most of the structural results are due to V. Fonf. We refer the reader to the surveys [1], [2] for other definitions of polyhedrality, main properties and bibliography. In this paper we present a short alternative proof of the basic result on the structure of the unit ball of the polyhedral space...
Currently displaying 241 –
260 of
352