-algebras of topological stable rank 1.
We study the boundary structure for w*-compact subsets of dual Banach spaces. To be more precise, for a Banach space X, 0 < ϵ < 1 and a subset T of the dual space X* such that ⋃ B(t,ϵ): t ∈ T contains a James boundary for we study different kinds of conditions on T, besides T being countable, which ensure that . (SP) We analyze two different non-separable cases where the equality (SP) holds: (a) if is the duality mapping and there exists a σ-fragmented map f: X → X* such that B(f(x),ϵ)...
We study, in the context of doubling metric measure spaces, a class of BMO type functions defined by John and Nirenberg. In particular, we present a new version of the Calderón-Zygmund decomposition in metric spaces and use it to prove the corresponding John-Nirenberg inequality.
Let X and Y be Banach spaces. We give a “non-separable” proof of the Kalton-Werner-Lima-Oja theorem that the subspace (X,X) of compact operators forms an M-ideal in the space (X,X) of all continuous linear operators from X to X if and only if X has Kalton’s property (M*) and the metric compact approximation property. Our proof is a quick consequence of two main results. First, we describe how Johnson’s projection P on (X,Y)* applies to f ∈ (X,Y)* when f is represented via a Borel (with respect to...
We prove that there exists a real or complex central simple associative algebra M with minimal one-sided ideals such that, for every non-Jordan associative polynomial p, a Jordan-algebra norm can be given on M in such a way that the action of p on M becomes discontinuous.