Page 1 Next

Displaying 1 – 20 of 437

Showing per page

Ideal amenability of module extensions of Banach algebras

Eshaghi M. Gordji, F. Habibian, B. Hayati (2007)

Archivum Mathematicum

Let 𝒜 be a Banach algebra. 𝒜 is called ideally amenable if for every closed ideal I of 𝒜 , the first cohomology group of 𝒜 with coefficients in I * is zero, i.e. H 1 ( 𝒜 , I * ) = { 0 } . Some examples show that ideal amenability is different from weak amenability and amenability. Also for n N , 𝒜 is called n -ideally amenable if for every closed ideal I of 𝒜 , H 1 ( 𝒜 , I ( n ) ) = { 0 } . In this paper we find the necessary and sufficient conditions for a module extension Banach algebra to be 2-ideally amenable.

Ideal norms and trigonometric orthonormal systems

Jörg Wenzel (1994)

Studia Mathematica

We characterize the UMD-property of a Banach space X by sequences of ideal norms associated with trigonometric orthonormal systems. The asymptotic behavior of those numerical parameters can be used to decide whether X is a UMD-space. Moreover, if this is not the case, we obtain a measure that shows how far X is from being a UMD-space. The main result is that all described sequences are not only simultaneously bounded but are also asymptotically equivalent.

Ideally factored algebras.

Amyari, M., Mirzavaziri, M. (2008)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Ideals and hereditary subalgebras in operator algebras

Melahat Almus, David P. Blecher, Charles John Read (2012)

Studia Mathematica

This paper may be viewed as having two aims. First, we continue our study of algebras of operators on a Hilbert space which have a contractive approximate identity, this time from a more Banach-algebraic point of view. Namely, we mainly investigate topics concerned with the ideal structure, and hereditary subalgebras (or HSA's, which are in some sense a generalization of ideals). Second, we study properties of operator algebras which are hereditary subalgebras in their bidual, or equivalently which...

Ideals in big Lipschitz algebras of analytic functions

Thomas Vils Pedersen (2004)

Studia Mathematica

For 0 < γ ≤ 1, let Λ γ be the big Lipschitz algebra of functions analytic on the open unit disc which satisfy a Lipschitz condition of order γ on ̅. For a closed set E on the unit circle and an inner function Q, let J γ ( E , Q ) be the closed ideal in Λ γ consisting of those functions f Λ γ for which (i) f = 0 on E, (ii) | f ( z ) - f ( w ) | = o ( | z - w | γ ) as d(z,E),d(w,E) → 0, (iii) f / Q Λ γ . Also, for a closed ideal I in Λ γ , let E I = z ∈ : f(z) = 0 for every f ∈ I and let Q I be the greatest common divisor of the inner parts of non-zero functions in I....

Ideals induced by Tsirelson submeasures

Ilijas Farah (1999)

Fundamenta Mathematicae

We use Tsirelson’s Banach space ([2]) to define an F σ P-ideal which refutes a conjecture of Mazur and Kechris (see [12, 9, 8]).

Ideals of extendable and liftable operators.

Pawel Domanski (2003)

RACSAM

Se introducen los ideales de operadores que admiten extensión o levantamiento y se presenta una nueva aproximación al estudio de la escisión de sucesiones exactas cortas de espacios de Banach. Se considera la maximalidad de estos ideales y se investiga si son cerrados respecto de los límites puntuales acotados. Se resumen algunos ejemplos y se clarifica el papel de los espacios L1 y L∞.

Ideals of finite rank operators, intersection properties of balls, and the approximation property

Åsvald Lima, Eve Oja (1999)

Studia Mathematica

We characterize the approximation property of Banach spaces and their dual spaces by the position of finite rank operators in the space of compact operators. In particular, we show that a Banach space E has the approximation property if and only if for all closed subspaces F of c 0 , the space ℱ(F,E) of finite rank operators from F to E has the n-intersection property in the corresponding space K(F,E) of compact operators for all n, or equivalently, ℱ(F,E) is an ideal in K(F,E).

Ideals of homogeneous polynomials and weakly compact approximation property in Banach spaces

Erhan Çalışkan (2007)

Czechoslovak Mathematical Journal

We show that a Banach space E has the weakly compact approximation property if and only if each continuous Banach-valued polynomial on E can be uniformly approximated on compact sets by homogeneous polynomials which are members of the ideal of homogeneous polynomials generated by weakly compact linear operators. An analogous result is established also for the compact approximation property.

Idéaux de fonctions différentiables. I

Jean-Claude Tougeron (1968)

Annales de l'institut Fourier

Les idéaux de fonctions C présentent des propriétés moins simples que les idéaux de fonctions algébriques ou analytiques. Cependant, les idéaux de type fini possèdent “en général” de “bonnes propriétés”. L’objet de cet article est de donner un sens précis à l’expression “en général” puis d’étudier diverses “bonnes propriétés”, notamment les propriétés de stratification et de stabilité. Les outils utilisés sont, entre autres, un théorème de quasi-transversalité, analogue au théorème classique de...

Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable

Cyril Agrafeuil (2005)

Studia Mathematica

We denote by the unit circle and by the unit disc of ℂ. Let s be a non-negative real and ω a weight such that ω ( n ) = ( 1 + n ) s (n ≥ 0) and the sequence ( ω ( - n ) / ( 1 + n ) s ) n 0 is non-decreasing. We define the Banach algebra A ω ( ) = f ( ) : | | f | | ω = n = - + | f ̂ ( n ) | ω ( n ) < + . If I is a closed ideal of A ω ( ) , we set h ( I ) = z : f ( z ) = 0 ( f I ) . We describe all closed ideals I of A ω ( ) such that h⁰(I) is at most countable. A similar result is obtained for closed ideals of the algebra A s ( ) = f A ω ( ) : f ̂ ( n ) = 0 ( n < 0 ) without inner factor. Then we use this description to establish a link between operators with countable spectrum and interpolating sets...

Currently displaying 1 – 20 of 437

Page 1 Next