Displaying 241 – 260 of 601

Showing per page

Ergodic theorems in fully symmetric spaces of τ-measurable operators

Vladimir Chilin, Semyon Litvinov (2015)

Studia Mathematica

Junge and Xu (2007), employing the technique of noncommutative interpolation, established a maximal ergodic theorem in noncommutative L p -spaces, 1 < p < ∞, and derived corresponding maximal ergodic inequalities and individual ergodic theorems. In this article, we derive maximal ergodic inequalities in noncommutative L p -spaces directly from the results of Yeadon (1977) and apply them to prove corresponding individual and Besicovitch weighted ergodic theorems. Then we extend these results to noncommutative fully symmetric Banach spaces with the Fatou property and nontrivial Boyd indices, in particular, to noncommutative Lorentz spaces L p , q . Norm convergence...

Errata

(1971/1972)

Séminaire Équations aux dérivées partielles (Polytechnique)

Errata

(1970/1971)

Séminaire Équations aux dérivées partielles (Polytechnique)

Errata

(1971/1972)

Séminaire Équations aux dérivées partielles (Polytechnique)

Erratum

(1971/1972)

Séminaire Équations aux dérivées partielles (Polytechnique)

Currently displaying 241 – 260 of 601