Displaying 1581 – 1600 of 13226

Showing per page

Automatic continuity of operators commuting with translations

J. Alaminos, J. Extremera, A. R. Villena (2006)

Studia Mathematica

Let τ X and τ Y be representations of a topological group G on Banach spaces X and Y, respectively. We investigate the continuity of the linear operators Φ: X → Y with the property that Φ τ X ( t ) = τ Y ( t ) Φ for each t ∈ G in terms of the invariant vectors in Y and the automatic continuity of the invariant linear functionals on X.

Automorphisms and derivations of a Fréchet algebra of locally integrable functions

F. Ghahramani, J. McClure (1992)

Studia Mathematica

We find representations for the automorphisms, derivations and multipliers of the Fréchet algebra L ¹ l o c of locally integrable functions on the half-line + . We show, among other things, that every automorphism θ of L ¹ l o c is of the form θ = φ a e λ X e D , where D is a derivation, X is the operator of multiplication by coordinate, λ is a complex number, a > 0, and φ a is the dilation operator ( φ a f ) ( x ) = a f ( a x ) ( f L ¹ l o c , x + ). It is also shown that the automorphism group is a topological group with the topology of uniform convergence on bounded...

Automorphisms of C commuting with partial integration operators in a rectangle

Svetlana Mincheva (2000)

Banach Center Publications

Convolutional representations of the commutant of the partial integration operators in the space of continuous functions in a rectangle are found. Necessary and sufficient conditions are obtained for two types of representing functions, to be the operators in the commutant continuous automorphisms. It is shown that these conditions are equivalent to the requirement that the considered representing functions be joint cyclic elements of the partial integration operators.

Automorphisms of central extensions of type I von Neumann algebras

Sergio Albeverio, Shavkat Ayupov, Karimbergen Kudaybergenov, Rauaj Djumamuratov (2011)

Studia Mathematica

Given a von Neumann algebra M we consider its central extension E(M). For type I von Neumann algebras, E(M) coincides with the algebra LS(M) of all locally measurable operators affiliated with M. In this case we show that an arbitrary automorphism T of E(M) can be decomposed as T = T a T ϕ , where T a ( x ) = a x a - 1 is an inner automorphism implemented by an element a ∈ E(M), and T ϕ is a special automorphism generated by an automorphism ϕ of the center of E(M). In particular if M is of type I then every band preserving automorphism...

Automorphisms of the algebra of operators in p preserving conditioning

Ryszard Jajte (2010)

Colloquium Mathematicae

Let α be an isometric automorphism of the algebra p of bounded linear operators in p [ 0 , 1 ] (p ≥ 1). Then α transforms conditional expectations into conditional expectations if and only if α is induced by a measure preserving isomorphism of [0, 1].

Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains

Simeon Reich, David Shoikhet (1998)

Studia Mathematica

Let D be a hyperbolic convex domain in a complex Banach space. Let the mapping F ∈ Hol(D,D) be bounded on each subset strictly inside D, and have a nonempty fixed point set ℱ in D. We consider several methods for constructing retractions onto ℱ under local assumptions of ergodic type. Furthermore, we study the asymptotic behavior of the Cesàro averages of one-parameter semigroups generated by holomorphic mappings.

Averages of uniformly continuous retractions

A. Jiménez-Vargas, J. Mena-Jurado, R. Nahum, J. Navarro-Pascual (1999)

Studia Mathematica

Let X be an infinite-dimensional complex normed space, and let B and S be its closed unit ball and unit sphere, respectively. We prove that the identity map on B can be expressed as an average of three uniformly retractions of B onto S. Moreover, for every 0≤ r < 1, the three retractions are Lipschitz on rB. We also show that a stronger version where the retractions are required to be Lipschitz does not hold.

Currently displaying 1581 – 1600 of 13226