Three-space-problem for some classes of linear topological spaces
We examine the so-called three-space-stability for some classes of linear topological and locally convex spaces for which this problem has not been investigated.
We examine the so-called three-space-stability for some classes of linear topological and locally convex spaces for which this problem has not been investigated.
We show that the strong dual X’ to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: , , , , or , where and . In particular, the Schwartz space D’ of distributions is homeomorphic to . As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to or to . In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic either...
Let be an operator ideal on LCS’s. A continuous seminorm p of a LCS X is said to be - continuous if , where is the completion of the normed space and is the canonical map. p is said to be a Groth()- seminorm if there is a continuous seminorm q of X such that p ≤ q and the canonical map belongs to . It is well known that when is the ideal of absolutely summing (resp. precompact, weakly compact) operators, a LCS X is a nuclear (resp. Schwartz, infra-Schwartz) space if and only if every continuous...